USING PREDICTIVE MODELING TO INCREASE SIX-YEAR GRADUATION

Jorge Martinez
Director of Research \& Reporting, Enrollment Services

Caroline Neary
Senior Research Analyst, Undergraduate Student Success

UH: INSTITUTIONAL OVERVIEW

- Large, 4-year, public, urban university
- 37k undergraduate students
- 72\% attend full-time
- 45\% first-generation
- 33\% Hispanic
- 40\% receive Pell grant

BACKGROUND

6-Year Graduation Rate

UNIVERSITY of HOUSTON

6-YEAR GRADUATION RATES: DEMOGRAPHIC

6-YEAR GRADUATION RATES: PRE-COLLEGE

Orientation Month

High School Rank

6-YEAR GRADUATION RATES: ACADEMIC

6-YEAR GRADUATION RATES: FINANCIAL

PHASE 1: LOGISTIC REGRESSION MODEL

Objective:
Utilize logistic regression analysis to identify relationships between student characteristics and six-year graduation.

Population:

Fall 2012, Fall 2013, and Fall 2014 FTIC Cohorts ($N=10,579$)

PREDICTORS

	Academic	Financial	Admissions	Demographics
Strong Predictors	DWF Grade Ratio Total Credits Passed	Lost Scholarship		
	Test/Transfer Credits Moderate Percent Full-Time Cumulative GPA Change of College	No Scholarship		Race/Ethnicity Residence County
Non-Significant Variables		Pell Eligibility Total Loans Unmet Financial Need	HS Class Rank Orientation Month SAT Score	First Generation

ACTIONABLE CONCLUSIONS

Compared to students from Harris County and its adjacent counties, students from other Texas counties were less likely to graduate in six years.
$>$ ACTION: Support and outreach for these students (about 14\% of FA20 cohort)

Students who lost or never had a merit scholarship were less likely to graduate in six years.
> ACTION: Expand first year academic scholarship opportunities, e.g., retention scholarship

Students enrolled full-time for a higher percentage of terms were more likely to graduate in six years.
> ACTION: Continue to encourage full-time enrollment, e.g., UHin4

Students with a higher ratio of D, W, and F grades to all grades were less likely to graduate in six years.
> ACTION: Expand support for students/instructors in high DWF rate courses, e.g., Gateways to Completion, LAUNCH

PHASE II: SURVIVAL ANALYSIS

- Helps us answer questions like
- How long can we expect patients to survive with certain medical conditions?

PHASE II: SURVIVAL ANALYSIS

- Helps us answer questions like
- How long can we expect students to graduate with different characteristics (gender, college, first generation status)?
- What proportion of students are expected to graduate by a specific academic year?
- What variables/factors/interventions are likely to increase or decrease time to graduation?

PHASE II: SURVIVAL ANALYSIS

- From classification to degree velocity
- Logistic regression (graduated Y / N)
- Survival analysis (time-to-degree)
- Model time until an event occurs
- Compare between groups
- How event correlates with quantitative variables
- Also known as Event History Analysis

CENSORING

- Censoring is a type of missing data problem
- The event never occurs during the study window
- Student drops out of the study for various reasons
- You only know if the individual survived up to the loss of follow-up

TIME-TO-EVENT

SURVIVAL FUNCTION

- Survival function is the probability an individual survives up to and including time t.

Academic Years	\# risk	\# event	\# censored	Survival probability	Std. err.	Upper	Lower
1	14,588	1	1797	0.9999	0.0001	1.0000	0.9998
2	12,790	37	1607	0.9970	0.0005	0.9980	0.9961
3	11,146	510	817	0.9514	0.0021	0.9554	0.9475
4	9,819	4545	457	0.5110	0.0096	0.5207	0.5015
5	4,817	2964	323	0.1966	0.0206	0.2047	0.1888
6	1,530	887	643	0.0826	0.0364	0.0887	0.0769

KAPLAN-MEIER SURVIVAL CURVE

UNIVERSITY of HOUSTON

OFFICE OF THE PROVOST

CUMULATIVE INCIDENCE

UNIVERSITY of HOUSTON

OFFICE OF THE PROVOST

GENDER

UNIVERSITY of HOUSTON

OFFICE OF THE PROVOST

GENERATION

UNIVERSITY of HOUSTON

OFFICE OF THE PROVOST

COLLEGE

Cumulative incidence for graduation ($\mathrm{N}=14,588$)

UNIVERSITY of HOUSTON

OFFICE OF THE PROVOST

COX PROPORTIONAL HAZARD MODELS

- Survival function helps us compare rates between categorical values
- We need the hazard function to estimate models with covariates and covariates that are numeric
- The hazard is the instantaneous event rate at a particular time point t.
- Hazard ratio is the ratio of two rates between two levels of a predictor (or unit increase in continuous predictor)

UNIVERSITY of HOUSTON

OFFICE OF THE PROVOST

Incoming Characteristics Model Hazard Ratios

UH Model Hazard Ratios

MODEL COMPARISONS

Incoming vs. First Year survival models:

- Pre-college characteristics no longer significant once more college characteristics were incorporated into the first-year model

MODEL COMPARISONS

Logistic Regression vs. Survival Analysis:

- Gender, race/ethnicity = African American, and race/ethnicity $=$ Hispanic became significant in the survival analysis
- Being from further away from UH became significant in the survival analysis with a positive relationship to graduation

UNIVERSITY of HOUSTON

OFFICE OF THE PROVOST

NEXT STEPS

- Decide on the most parsimonious model
- Expand analysis term-by-term
- Time-varying covariates
- Incorporate course data
- Use to identify students for outreach/intervention at specific times

LIMITATIONS

The variables in the model are limited to the data accessible on UH students. The model does not capture variables like student engagement or sense of belonging; it cannot capture individual student experiences and struggles. It also does not capture the daily efforts of undergraduate student success staff, such as advising, outreach, and tutoring.

CONTACT INFORMATION

Jorge Martinez
jxm@uh.edu

Caroline Neary
csneary@uh.edu

