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rFSA: An R Package for Finding Best

Subsets and Interactions
by Joshua Lambert, Liyu Gong, Corrine F. Elliott, Katherine Thompson and Arnold Stromberg

Abstract Herein we present the R package rFSA, which implements an algorithm for improved
variable selection. The algorithm searches a data space for models of a user-specified form that are
statistically optimal under a measure of model quality. Many iterations afford a set of feasible solutions
(or candidate models) that the researcher can evaluate for relevance to his or her questions of interest.
The algorithm can be used to formulate new or to improve upon existing models in bioinformatics,
health care, and myriad other fields in which the volume of available data has outstripped researchers’
practical and computational ability to explore larger subsets or higher-order interaction terms. The
package accommodates linear and generalized linear models, as well as a variety of criterion functions
such as Allen’s PRESS and AIC. New modeling strategies and criterion functions can be adapted easily
to work with rFSA.

Introduction

In recent years, novel statistical modeling techniques have become more computationally intensive in
an effort to accommodate the massive datasets afforded by advances in fields such as data mining and
genetic sequencing. The volume and complexity of available data continue to grow, overwhelming
even the fastest modern computers (Goudey, 2015). Efforts to analyze such complex data usually
involve some level of data reduction (e.g., Principle Component Analysis, Partial Least Squares,
Sufficient Dimension Reduction), which can yield convoluted statistical models whose parameters
researchers and statisticians alike struggle to interpret. Furthermore, many of these strategies are
limited to specific model forms and lack the flexibility to explore higher-order interactions. Herein we
present an alternative to data reduction that accommodates a variety of modeling strategies, including
large-subset selection and identification of higher-order interaction terms. The resulting models,
coefficient estimates, and predictions remain easily interpretable and flexible to traditional modes of
statistical inference.

The Feasible Solutions Algorithm (FSA) overcomes the problems described above by searching a re-
duced data space to produce feasible solutions (Hawkins, 1994; Miller, 1984). Feasible models (Hawkins,
1994) are optimal under a given criterion function in the sense that no single exchange of an explana-
tory variable contained in the model for a variable outside the model will yield an improvement to
the criterion. Miller (1984) first introduced the idea of a sequential-replacement algorithm such as
the FSA. According to Miller, this computationally "cheap" method boasts rapid convergence; flexible
implementation; and improved results compared to forward or backward selection. Miller also noted
that the replacement algorithm could give too many solutions if repeated. However, Hawkins (1994)
applied a similar exchange algorithm to the problem of finding robust regression estimators and
minimum-volume ellipsoid estimators in multivariate data, demonstrating that with a sufficient num-
ber of random starts, the algorithm could find the optimal solution with arbitrarily high probability.
Upon testing the algorithm, Hawkins also exhibited its superior performance relative to exhaustive
search.

Exhaustively searching for an optimal model containing interactions is particularly demanding,
computationally speaking, and not always reasonable or even attainable. For this reason, many
published analyses do not even attempt to explore interactions. In other cases, interaction terms are
identified by a primary investigator on the basis of his or her prior knowledge of the field, and then
screened on an individual level by a statistician or data scientist. Such a process is tedious and time-
consuming, and usually results in interactions being ignored or overlooked due to the sheer number of
possibilities. These factors unite to afford a widespread lack of consideration for interactions, thereby
undermining the predictive power of models attempting to capture complex relationships (Foster
and Stine, 2004). We address these limitations by implementing an FSA with the capacity to explore
higher-order terms, combined with the accessibility and ease of use associated with an R package.

The R implementation of our Feasible Solution Algorithm, rFSA 0.9.1, is now accessible via GitHub
and CRAN.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859


https://CRAN.R-project.org/package=rFSA
https://github.com/joshuawlambert/rFSA
https://cran.r-project.org/web/packages/rFSA/index.html

CONTRIBUTED RESEARCH ARTICLES 296

Feasible Solutions Algorithm

Statisticians are often faced with the problem of identifying an informative subset of m explanatory
variables from a set of p predictor terms, which we will denote XP. Consider selecting p™ > 0
explanatory variables, denoted XF', to compose a preliminary model. Let g(Y,X) be an objective
(criterion) function, generally a measure of model quality such as R?, AIC, or PRESS. We wish to
identify the m additional variables, X", that when added to the existing model serve to optimize the
objective function g(Y, X(P" ).

The Feasible Solution Algorithm implements the following strategy, where we initially consider
only first-order predictor terms:

1. Randomly select m variables to compose X", and compute the objective function g(Y, X" ),

2. Under each possible exchange of one of the m variables in the working model for a variable not
contained in the model, compute the new value of the objective function.

3. Make the single exchange of variables from Step 2 that most improves the objective function.

4. Continue making exchanges until no single additional exchange improves the objective function.
The variables X', X" composing the final model constitute a single feasible solution.

5. Return to (1) to search for another feasible solution.

Miller (1984) illustrates the general procedure as follows: Suppose you have a dataset containing 26
predictor variables labeled A through Z, and imagine you wish to find the best subset of four predictor
variables. Randomly select four initial predictors; suppose these are ABCD. Consider exchanging
one of A, B, C, or D with each of the 22 remaining variables. Make the change that most improves
the objective function; suppose we swap C for X, so that the working subset becomes ABXD. Next
consider exchanging one of A, B, X, or D. (In point of fact, considering an exchange involving X is
here redundant and unnecessary.) Repeat this process until no additional exchange of variables yields
further improvement to the objective function.

If instead a user requests interaction terms of mth order, our FSA randomly selects m effects to
compose an initial interaction term in step (1). In step (2), the algorithm considers exchanging any
one of the m variables involved in the interaction term. In accordance with the hierarchical paradigm,
all associated lower-order interactions and main effects are exchanged as well, prior to calculating
the associated objective function; no linear or lower-order terms are included in the model beyond
those required to complete the hierarchy unless the user requests a variable be fixed in the model.
The sequential-replacement procedure otherwise operates as described above, but this extension
permits optimization with respect to the p-value of an interaction term as an alternative to standard
model-building criteria.

Each iteration of the FSA yields a single feasible solution, which is the most-optimal model under
a given criterion that can be reached from the (random) starting configuration by means of sequential
replacement. Of course, depending on the initialized model, the algorithm may not converge to
the global optimum with respect to the specified objective function. However, if a truly correct
model exists and consists of explanatory variables present in the dataset, then under an appropriate
objective function and with many iterations, rFSA is increasingly likely to discover it: A model
containing correct explanatory variables should yield a value for the criterion superior to that of a
model containing explanatory variables unrelated to the response. In our experience with rFSA, the
models best supported by the data tend to manifest more often than inferior models, but it can be
shown that with many random starts even relatively rare (locally or globally) optimal configurations
may be identified (Hawkins, 1994). Thus, with multiple random starts, the FSA is likely to discover
the optimal model, as well as additional models that would be overlooked if one considered only the
‘best’ model under a specified criterion, but which may contain additional information of interest from
a clinical or scientific viewpoint.

Other algorithms for subset selection

Many existing methods attempt to identify the best subset of predictors that adequately explains
a response variable. Common automatic variable-selection techniques include forward selection,
backward elimination, and step-wise regression methods, while penalized regression techniques, such
as LASSO, are commonly used for subset selection with many variables. Exhaustive search procedures
simply examine all possible combinations of predictors under a viable model structure — but even
on the most-powerful computers, this approach becomes impracticable for datasets containing many
explanatory variables (Goudey, 2015). Algorithms implementing these procedures in the context of
linear or generalized linear models, respectively, are currently available in the form of R packages
leaps (Lumley and Miller, 2009), glmulti (Calcagno, 2013), and glmnet (Friedman, 2008).
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Other algorithms for finding interactions

Computational methods for exploring potential interactions include Random Forest (Jiang, 2009)
and Boosting (Lampa, 2014) methods. In the former approach, researchers examine branches of a
regression tree to identify splits that contribute downstream to alternative classifications of the response
variable. Bayesian methods also exist for identifying interactions, although they tend to specialize in
exploration of large genetic datasets (Zhang and Liu, 2007). LASSO can be used to identify interactions
by selecting informative variables from an initial pool containing all possible interactions as well as
first-order terms (Bien et al., 2013), and LASSO for Hierarchical Interactions has been implemented in
the R package hierNet (Bien and Tibshirani, 2014). Although all of these methods have been used
previously for identifying interactions, the software for implementing them are limited with respect
to the statistical methods they utilize and criterion functions they oblige. The statistical community
would therefore benefit from a robust algorithm whose package can accommodate multiple statistical
methods and criterion functions.

rFSA

Our R package rFSA implements the FSA described above for use in subset selection and identification
of interaction terms. The primary function, FSA, accepts as two of its arguments any user-specified
R functions for use in fitting models (e.g., 1m, glm) and calculating the model criterion (e.g., AIC, BIC,
r.squared), with only the restrictions that the criterion function must (1) accept as its argument the
model object returned by the specified model-fitting function and (2) return a single numeric value.
Additional arguments to FSA include the number of parameters to consider, whether to investigate
interactions with or without quadratic terms, and whether to minimize or maximize the criterion
function.

Architecture

Within the R package rFSA, the function FSA is used to identify feasible models. A full list of the
parameters belonging to FSA are described below, for reference in illustrating the architecture of the

package:
Parameters:

formula symbolic description of the functional model form to be fitted. All subsequent
analysis will model the response variable designated by this parameter.

data data frame containing the set of predictor variables of interest.

fitfunc function to fit the model. Defaults to 1m.

fixvar vector of one or more variable names to be fixed in the model as main effects.
Defaults to NULL.

quad logical: whether to consider higher-order interactions containing two instances of
the same variable. Defaults to FALSE.

m number of predictors to compose a model. If interactions is TRUE then m is the
order of interactions to consider.

numrs number of random starts to perform.

cores number of cores to use while running. Restricted to 1 for a Windows machine.

interactions logical: whether to include interactions in model. Defaults to TRUE.

criterion vector of criterion function(s) to maximize or minimize. Defaults to AIC.

minmax vector of strings "min" or "max" specifying whether to minimize or maximize each
criterion function. Defaults to "min".

checkfeas vector of variable names composing a model to test for feasibility. If multiple
random starts specified, test of feasibility will occupy the final random start.
Defaults to NULL.

var4int variable to be fixed in the model as one component of the interaction term. Defaults

min.nonmissing

return.models

to NULL.
minimum threshold for observations required to fit a model. Defaults to 1.
logical: whether to return fitted model objects. Defaults to FALSE.
additional arguments to be passed to the model-fitting function.

Assume we wish to discover the first-order linear model containing three predictors, chosen from

a pool of eight predictors, with maximal R?. To increase our probability of discovering the global
optimum with respect to our chosen criterion, we choose to execute ten random starts. To decrease
the time until completion, we run the algorithm on five cores. Let dat.all denote the data frame
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containing the response variable, denoted Y, and all eight predictors. Then the code required to execute
this search is provided below, acting on a simulated response variable and eight continuous predictors.

set.seed(40508)

# simulate explanatory variables, response, and uninformative variables
x1 <= rnorm(100)
x2 <= rnorm(100)
x3 <= rnorm(100)
dat.all <- data.frame(Y = 2 + 3*x1 - 4*x2 + 0.5%*x3 + rnorm(100),
X1 = x1, X2 = x2, X3 = x3,
X4 = rnorm(100), X5 = rnorm(100), X6 = rnorm(100),
X7 = rnorm(100), X8 = rnorm(100))

# load package and execute rFSA

library(rFSA)

fsa.fit <- FSA(formula = 'Y~1', data = dat.all, fitfunc = 1lm, quad = FALSE, m = 3,
numrs = 10, cores = 5, interactions = FALSE, criterion = r.squared,
minmax = "max”, return.models = FALSE)

print(fsa.fit)

rFSA first generates the ten random starts, each of which consists of three indices: one correspond-
ing to each predictor in the initial model. For each random start, the algorithm generates every unique
exchange of variables that can be achieved from the initial model. Corresponding models are fitted
by calling the fitfunc, in this case 1m, and the criterion function calculated for each of the resulting
models. If the user specifies multiple cores, then the mcapply function from R package parallel is
employed to fit multiple models simultaneously. Criterion values, here R? values, are stored in a hash
table to prevent having to fit the same model multiple times across different random starts, thereby
achieving an additional gain in computational efficiency as well as reducing the memory requirement.
(If return.models is TRUE, then the model objects themselves are stored in a separate list.) tTFSA makes
the exchange that achieves the greatest improvement in model criterion, and then repeats the process
of generating and making exchanges. The algorithm ceases iterating on a single random start when
the best exchange yields no change in the model, or when the working model converges to a feasible
solution discovered previously.

The FSA function is written as an S3 object. Returned results assume class definition FSA and can be
used in conjunction with standard S3 functions print, summary, predict, fitted, and plot, described
in greater detail below.

Implementation

The core of the package is the FSA optimization procedure, which is depicted as a flowchart in Figure
(1). As this figure illustrates, the procedure can be divided into several sub-procedures as follows:

¢ The algorithm first generates a number (specified by user, here denoted M) of random starts
Py, Py - - - Py;. Each member P; is a random combination of variables from the predictor set.

¢ For each random start P;, tFSA then generates all possible variable exchanges Q;1, Qi» - - - QiN-
Similar to a random start, each Q;; is also a combination of variables, but differs from its corre-
sponding start position P; by precisely one variable. As a result, we obtain M x N combinations.

* Next, for each combination Q;;, rFSA fits the model using the function specified by the input
argument fitfunc and calculates the corresponding criterion value using the function specified
by criterion. Thus we obtain a criterion value C;; for each combination Q;;.

¢ The criterion values C;;,Cj; - - - C;y are used to identify the optimal exchange among
Qi1,Qip, - - -, Qin from the starting configuration P;. The best swap combination, denoted Pi’ ,is
that with the smallest or largest criterion depending on the user-specified argument minmax.

* Finally, the algorithm decides whether to continue iterating by comparing the best swap P/ and
initial combination P;. If they are equal, then the algorithm stops processing and stores P; as a
feasible solution. Otherwise, it updates P; to P/ and continues iterating until a feasible solution
is found.

Note that the computationally most-intensive stage of the algorithm occurs when obtaining the
model fit and criterion values for combinations Q17 - - - Q1n, -+, Qum1 - - - QunN. Moreover, some of
this work is redundant, as the same model fit may be required as many as M times. We therefore elect
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Figure 1: Overview of our implementation of the FSA optimization algorithm. A number of random
starts are generated, followed by candidate variable exchanges and the criterion value associated
with each new model. The best swap candidate is chosen according to the criterion values and then
compared with the starting configuration. If they are equal, then they constitute a feasible solution.
Otherwise, the starting configuration is updated by assuming the value of the best swap, and the
procedure iterates until a feasible solution is found.
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Figure 2: Illustration of storing and referencing criterion values using a global table. For each
combination of variables, we first check for the model criterion in the table and return it if found.
Otherwise, we fit the model, calculate the criterion, and add the calculated value to the table. To
further speed execution, model fitting for different combinations of variables is processed in parallel
using multiple cores.
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to store criterion values upon calculation, thereby reducing the computational burden and improving
execution efficiency. A detailed schematic of this implementation is provided in Figure (2).

The FSA function implements the procedure depicted in Figure (2) to maintain a global table of
criterion values for easy reference. Prior to calculating a model criterion, rFSA first checks whether
the model has been fitted previously and, if so, uses the stored criterion value rather than refitting
the model. If the model’s criterion is not represented in the existing table, then rFSA fits the model,
calculates the criterion value, and stores that value in the table. Specifically, we adopt following
techniques to optimize our implementation of the algorithm:

* By maintaining a look-up table, we avoid redundant computations to fit the same model
multiple times.

* We implement the look-up table as a hash table, which achieves constant-time insertion and
querying.

* We use the R package hashmap (Russell, 2017) to implement the criterion table. hashmap is
written in C++, yielding further improvement to the execution speed of rFSA.

* We fit models in parallel on multiple computation cores using the mclapply function of the
parallel package. Because model fitting is independent across different sets of variables, the
task is appropriate for multi-thread or multi-process parallelization.

Usage

In this section, we consider some nuances related to the arguments of the function FSA, and end with
details of the results returned by the same function.

The formula parameter allows users to specify an initial fit. Because initial models are randomly
generated, it is sufficient to specify a null model containing solely the desired response variable and
an intercept term, e.g., Y ~ 1. Variables to be fixed in the model should be provided in the form of a
vector of character strings representing the variable names, provided to FSA as the argument fixvar.

The data structure should contain only the target response variable and predictor variables of
interest, with each variable occupying a distinct column of the data structure. Variables known to be
superfluous should be omitted from the data structure prior to executing FSA. Furthermore, categorical
variables should be denoted in quotes or stored as factors to distinguish from quantitative variables,
and should assume at least two levels to avoid complications due to invariance.

Models will be fitted using the user-specified fitfunc, to which the formula, data, and any
additional arguments will be passed. The objective function criterion may be any user-specified R
function that accepts as its argument the model object returned by fitfunc, provided the criterion
function returns a single numeric value (or NA) that can be minimized or maximized. If users intend to
write their own criterion functions, we recommend that they protect against errors by enshrouding
the functions in tryCatch statements, available in base R. As an alternative, users may specify one of
the criterion functions built into rfFSA, which are detailed below. In either case, the specified criterion
function will be maximized or minimized in accordance with the value of minmax.

The mclapply function used to support parallel processing in rFSA accommodates the use of
multiple cores for Unix environments only. For this reason, rFSA automatically instantiates the cores
parameter to 1 for Windows users, regardless of the user-specified value. For Unix machines with
multiple cores, we recommend a maximum threshold for cores of one fewer than the number of cores
available on the machine. Users can execute parallel::detectCores() to determine the number of
cores on their computers.

To request subset selection without interactions, interaction must be set to FALSE. (In this case,
the quad parameter will be ignored.) In this scenario, m denotes the number of predictors to compose
each resulting subset. In the case of interactions = TRUE, the meaning of m changes to represent the
desired interaction order. (During model fitting, all lower-order terms associated with the interactions
are also included). In such an instance, the parameter var4int can be used to fix a variable as one
member of the interaction term, thereby restricting the FSA function to identify m-way interactions
containing the specified predictor along with any other m — 1 variables. The quad parameter specifies
whether higher-order interactions should be permitted to contain the same variable twice. Regardless
of these parameters, the FSA function yields feasible solutions equal in number to numrs. However,
these models may not be unique if a feasible solution is accessible from multiple random starting
positions. In order to provide cleaner results, rFSA produces a table summarizing these results (see
Function Outputs, below).
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Finally, the FSA function accommodates testing for the feasibility of a model, where the desired
predictors may be provided as the argument checkfeas. If the model is feasible, then the resulting
feasible solution will contain the same variables as checkfeas; otherwise, the FSA function returns the
feasible model accessible from the initial model specified in checkfeas. If the user specifies multiple
random starts, then the test of feasibility occupies the final random start.

Criterion Functions

Criterion functions built into rFSA include R? (r.squared) and adjusted R? (adj.r.squared),
Allen’s PRESS statistic (apress), interaction p-values (int.p.val), Akaike’s Information Criterion (AIC)
and the Bayesian Information Criterion (BIC), penalized Quasi-likelihood under the Independence
model Criterion (QICu.geeglm), and Bhattacharyya Distance (bdist). These functions may not be
appropriate for all functions provided to fitfunc as, for example, r.squared does not accommodate
generalized linear models.

Most of the above metrics are well known and thus do not require introduction, but we sum-
marize briefly two of the less-common statistics. The Bhattacharyya Distance (Bhattacharyya, 1946)
is a distance measure that quantifies the disparity between two distributions. The Bhattacharyya
Distance is particularly useful for a binary response when the user’s interest lies in exploring two-way
interactions between continuous explanatory variables (Janse, 2017). This is a common problem in
large genetic datasets, in which context bdist is doubly useful because it converges faster than the
other criterion functions. The Quasi-likelihood under the Independence model Criterion (QIC) (Pan,
2001) is a goodness-of-fit statistic for generalized estimating equations, analogous to AIC. The function
built into rFSA accepts an object of class geeglm, fitted with geepack (Hejsgaard et al., 2006; Yan and
Fine, 2004; Yan, 2002), and returns the penalized QIC, denoted QICu, which is preferred for subset
selection.

Function Outputs
A successful run of the FSA function returns a list with seven elements, described below:
Returned Values:

$originalfit model object representing the fit of the user-specified original model.

$call list of FSA function parameters and their actualized values.

$solutions list of initial and final (i.e., feasible) predictors contained in each model; crite-
rion function values for feasible models; and number of exchanges made. If
return.models=TRUE then solutions will contain an object of all fitted models
called checked.model.

$table data frame of unique feasible solutions; corresponding criterion values; and the
number of random starts that converged to each solution.

$efficiency  character string contrasting the total number of fitted models and criterion values
calculated using rFSA against those required for exhaustive search on the same
dataset.

$nfits integer representing the total number of fitted models.

Given an FSA object as its argument, the print command will display a table containing the original
user-specified model and all feasible solutions that the algorithm found over numrs random starts. The
table also contains criterion values for each model, and the number of random starts that converged
to each feasible solution. Generally speaking, the original fit is not a feasible solution, and thus the
number of random starts for that model will be listed as NA. The summary command acting on an object
of class FSA will display a list containing as its elements the summary output of each fitted model;
the format therefore depends on the chosen fitfunc. The predict and fitted functions operate in a
similar fashion to summary, returning a list of predicted or fitted values, respectively, for each model.
Finally, the plot function generates a Q-Q plot and a plot of residuals against fitted values for each
model, displayed in a compact manner.

Availability

Currently, rFSA version 0.9.1 is available to download from the Comprehensive R Archive Network at
https://cran.r-project.org/web/packages/rFSA. To install the newest beta version of rFSA, first in-
stall the devtools package in R, and then run devtools: :install_github("joshuawlambert/rFSA").

Shiny App

An easy-to-use Shiny Application is also available to facilitate the basic functions of the package. We
believe this application will serve an important role for researchers unfamiliar with R, who would
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nonetheless benefit from the ability to describe and/or make predictions from large datasets. Our
Shiny Application allows users to upload their own data and specify parameter values via radio
buttons and drop-down boxes, as well as to visualize fundamental elements of the resulting models.
The application currently subsists on a server hosted by the University of Kentucky, accessible from
https://shiny.as.uky.edu/mcfsa/. Important: Users should not upload sensitive data to our FSA
Shiny Application. To accommodate protected data, a future version of rFSA will permit users to run
local instances of the Shiny Application.

Comparison to other packages

Several R packages exist already for finding best subsets and exploring pairwise interactions. Two
of the most-popular packages in current use are the leaps (Lumley and Miller, 2009) package and
glmulti (Calcagno, 2013). These packages use criterion functions such as R?, adjusted R%, Mallow’s C s
residual sum of squares, and AIC/BIC to identify the best subset of predictor variables to describe a
given response variable. Although these packages are useful, they offer a limited selection of statistical
models and criterion functions. In this section, we describe these and other limitations on existing
packages, and explain how rFSA seeks to overcome them.

The leaps package leverages exhaustive search, forward or backward selection, or a sequential-
replacement algorithm to find the best subset of predictors to compose a model. This sequential-
replacement algorithm is a variation on the FSA introduced by Miller (1984) and described above,
and therefore serves as a relatively efficient option for analyzing large datasets. Although the leaps
package is flexible and robust, at present it does not accommodate interaction terms, model forms
other than first-order linear, or the use of alternative criterion functions to the aforementioned five. The
bestglm (MclLeod and Xu, 2017) package seeks to extend best-subset model selection to generalized
linear models but is not natively capable of looking for higher-order interactions, using external
criterion functions, or accommodating other statistical methods. It also makes no special consideration
for large problems, rendering it unsuitable for datasets with more than 100 predictors. glmulti
improves on the aforementioned packages in that it is capable of incorporating pairwise interaction
terms into exhaustive search or a genetic algorithm, but it does not support other statistical methods,
higher-order interactions, or flexible criterion functions.

Timing comparisons

We now present the results of a simulation conducted to compare the performance of rFSA against
that of of exhaustive search with leaps. We include neither glmulti nor bestglm in the comparison
because neither package was able to accommodate the high-dimensional datasets of interest (p > 100).

Simulations were conducted on twenty-five datasets of N = 250 observations for various numbers
of predictors, again denoted by p. In each dataset, a continuous response was generated randomly
from a standard normal distribution. Half of the predictors were generated randomly from a standard
normal distribution, and the other half, from a Bernoulli distribution with P(X = 1) = 0.50.

The execution speed of each package was measured individually for each dataset. Simulations
were conducted in R version 3.4.1 on a Linux machine with Intel(R) Xeon E5-2698 v4 @ 2.20GHz with
128.00 GB of memory. A single core was allocated for each of regsubsets and the FSA function. Code
follows for calling the relevant function in each of packages leaps (version 3.0) and rFSA (version
0.9.1) to search for best subsets of size three:

leaps::regsubsets(x = ..., y = ..., nbest = 1, nvmax = 3, really.big =T,
method = "exhaustive")
rFSA: :FSA(X1 $\sim$ 1, data = ..., interactions = F, m = 3, numrs = 1, criterion = AIC,
minmax = "min")

Figure 3 compares the run-time in log(seconds) for these commands over twenty-five simulations
and p = (150,250, 350, 450, 650, 750, 850) when searching for best subsets of size three. Exhaustive
search with leaps exhibits a superior run-time on average for p < 350, while rFSA is more efficient
when p > 350. rFSA was approximately 13 minutes faster for p = 750. The growth in execution time
for rFSA slows relative to that of leaps as the number of variables increases: Although the overhead is
higher for FSA, the costs associated with analyzing incrementally larger volumes of data are lower.

Figure 4 depicts run-times for twenty-five simulations of p = (50,100, 150, 200, 250, 300, 350) when
searching for best subsets of size five. In this scenario, exhaustive search with leaps evinces a faster
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Figure 3: Timing comparison of exhaustive search with leaps versus rFSA with one random start. Each
package was assigned to identify best subsets of size three from datasets of size n = 250 and various p.
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Figure 4: Timing comparison of exhaustive search with leaps versus rFSA with one random start. Each
package was assigned to identify best subsets of size five from datasets of size N = 250 and various p.
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time for p = 50, while rFSA exhibits a superior run-time for all other datasets (p > 50). The largest
difference in time between leaps: : regsubsets and rFSA: : FSA for best subsets of size five and a fixed
p was 89, 815 seconds (or 24.9 hours) for p = 350. Figures 3 and 4 both illustrate that the growth in
run-time of our implemented FSA algorithm is much slower than leaps, which confirms the better
time complexity of tFSA. As a result, our implemented algorithm is able to analyze datasets with large
p at a much faster rate than the conventional alternative package.

Across the 175 simulations for best subsets of size three, rFSA identified the optimal solution in 158
of the simulations. When searching for best subsets of size five, rFSA discovered the optimal solution in
144 simulations and afforded gains in run-time of up to 24 hours. Although rFSA does not implement
an exhaustive search, execution with many random starts often requires fewer computations while yet
producing the optimal solution with arbitrarily high probability (Hawkins, 1994). Thus for large p, we
argue that rFSA is a practical solution for researchers who wish to consider high-dimensional data,
higher-order terms, generalized linear or mixed models, or other non-traditional statistical methods
and criterion functions.

Example

Two- and three-way interactions in Census Data

The 2014 Planning Database Block Group Data (PDB) from the Census Bureau is publicly available
athttp://www.census.gov/research/data/planning_database/2014/. Descriptions of the variables
can be found from PDB documentation on the aforementioned website. Herein we examine only
the census blocks associated with Kentucky, with several variables removed because they were
transformations of other variables. The final dataset contained 3285 observations and 67 quantitative
explanatory variables in addition to the quantitative response variable, mail response rate. The revised
dataset can be downloaded from https://github.com/joshuawlambert/data/raw/master/census_
data_nopct.csv.

In this example, we search for the best linear model containing (a) two main effects and their
interaction, or (b) three main effects, as well as their pairwise and three-way interactions. To fit
linear models using the FSA function, we set fitfunc equal to 1Im. For simplicity, we choose not
to fix any variables in the models, which we achieve by setting fixvar equal to NULL. We provide
a null model regressing the response variable y (Mail Response Rate) solely on an intercept term,
thereby restricting rFSA to use y as the response variable throughout the procedure. The criterion
function is taken to be int.p.val (interaction p-value) and minimized on each iteration. To specify a
desire for two-way interactions, we set parameters interactions = TRUE and m = 2; for three-way
interactions, interactions = TRUE and m = 3. We request 50 random starts, which rFSA completed in
approximately one minute form = 2 or five minutes form = 3 on a Windows 7 machine with Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz and 24.00 GB of memory.

R Code follows for reproduction of these results:

install.packages("rFSA")

library(rFSA)
download.file("http://raw.githubusercontent.com/joshuawlambert/data/master/

census_data_nopct.csv”,destfile = "tmp.csv")
census_data_nopct <- read.csv(file = "tmp.csv")

# find two-way interactions

set.seed(123)

fit_2_way <- FSA(formula = "y~1", data = census_data_nopct, fitfunc = 1lm,
fixvar = NULL, quad = F, m = 2, numrs = 5@, cores = 1,

interactions = T, criterion = int.p.val, minmax = "min")
print(fit_2_way) # summary of solutions found
summary(fit_2_way) # list of summaries from each 1lm fit
plot(fit_2_way) # diagnostic plots

# find three-way interactions

set.seed(1234)

fit_3_way <- FSA(formula = "y~1", data = census_data_nopct, fitfunc = 1lm,
fixvar = NULL, quad = F, m = 3, numrs = 5@, cores = 1,
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interactions = T, criterion = int.p.val, minmax = "min")
print(fit_3_way) # summary of solutions found
summary(fit_3_way) # list of summaries from each 1lm fit
plot(fit_3_way) # diagnostic plots

Two-way interactions

Across 50 random starts seeking two-way interactions, rFSA discovered three unique feasible solutions.
The solution with the smallest two-way interaction p-value occurred 24 times, ranking second in
prevalence. The three interactions suggest relationships between (a) number of households with both
spouses as members, and number of persons aged 18 to 24 (p = 6.19 x 10~38); (b) average household
income and average aggregate house value in dollars (p = 1.68 x 10~%%); and (c) number of mobile
homes and total vacant housing units (p = 7.26 x 1071°). All three interaction p-values are significant

using a Bonferroni-adjusted cutoff of %9 ~ 0.00045.
2

()

Having identified a set of feasible solutions, an investigator generally wishes to examine a summary
of each model fit. Given an object, fit, returned by FSA, the function call summary(fit) returns a list
of summaries for each model fit (including the original). Assessing the fit of each feasible solution can
be facilitated with plot(fit) to display diagnostic plots for the original and feasible models. Each
solution should be considered in a practical manner, with reasonable interpretations of the interaction
term being considered prior to its inclusion in a final model.

The three interactions listed above are informative for understanding the types of results returned
by the algorithm. For example, one might expect that a larger average household income would
be correlated positively with the average value of houses in a census block. Thus, as in any linear
regression setting, multicollinearity may account for apparent relationships in the data. The second
interaction, between number of households with both spouses as members and the number of persons
aged 18 to 24, may be more meaningful in the description of mail response rate (y). Because this
interaction is both justifiable and statistically significant, an investigator would have considerable
evidence to warrant its inclusion in a final model.

Three-way interactions

Across 50 random starts seeking three-way interactions, rFSA identified 14 feasible solutions. The
most-frequently observed feasible solution occurred 13 times and boasted the smallest three-way
interaction p-value. This interaction contains two variables identified previously in our search for
two-way interactions. The three-way interaction among the number of households in which both
spouses are members, the number of persons aged 18 to 24, and the number of people who indicate
no Hispanic origin and their sole race as "White," affords an interaction p-value of 7.62 x 10~2* and
remains significant under a Bonferroni correction. This interaction suggests that the combined effect
of married couples and young adults is further modified by the number of people who identify as
"White." That is, in locations with a larger population of whites, the effect on mail response rate of
having more married couples changes depending on the prevalence of young adults aged 18 and
24. The interaction is reasonably easy both to interpret and to justify, as well as being statistically
significant, and thus would warrant additional investigation by an interested researcher.

In sum, leveraging rFSA can highlight associations and interactions underlying a dataset that may
not be immediately apparent to the researcher. The package is easy to manipulate (as demonstrated by
the sparseness of the code provided in this example) as well as highly efficient, and generally returns
multiple subsets of variables to permit flexible exploration and validation.

Conclusion

In this paper, we discuss the implementation in R of a complex algorithm originally proposed by
Miller (1984) and Hawkins (1994). We further demonstrate its versatility and computational efficiency
by comparison with existing subset-selection packages and by execution on a real-life census dataset.
Our package, rFSA, is available on CRAN and GitHub. Additionally, a light version of the algorithm
is available as a Shiny Application for the convenience of users with limited familiarity with R.

rFSA boasts several improvements over existing R packages for finding best subsets, some of the
most popular of which include leaps, bestglm, and glmulti. Although these packages all perform
well in implementing exhaustive searches without interactions, they offer a limited choice of statistical

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 306

technique, and often struggle when confronted with high-dimensional datasets. By contrast, rFSA
accommodates large datasets, higher-order interaction terms, and a variety of model forms and
criterion functions, and can be adapted to work with less-traditional statistical methods such as survey-
weighted, penalized, hierarchical, zero-inflated, survival, and many other regression techniques. The
results permit facile interpretation and remain flexible to conventional modes of statistical inference.
Finally, the algorithm exhibits a considerable speedup on single-core operations for large subsets, and
large p, relative to variable-selection packages in common use.

To improve the accessibility and convenience of the FSA for use by the general research community,
we plan to incorporate more features of rFSA into the existing Shiny Application. Moreover, we intend
to improve the data-visualization features of both App and package, and to build an off-line version
of the Shiny App for users with secure data. We will seek further improvements to execution speed
and resource management to encourage analysis of yet-larger datasets, and incorporate additional
model forms and criterion functions to permit efficient analysis by non-traditional methods.

Through its versatility and flexibility, fFSA provides an alternative algorithm for model selection
that allows users to find statistically optimal subsets and interaction effects in a variety of datasets. Im-
proved model selection may afford better predictive power, which can in turn illuminate relationships
underlying large datasets in a variety of research fields.

Summary

This paper outlines an R package, named rFSA, for subset selection and discovery of higher-order
interactions. rFSA is flexible to a variety of statistical models and criterion functions, including those
implemented by the user, and boasts execution speeds superior to existing subset-selection packages in
context of large datasets. The release version of rFSA is hosted on CRAN, and the development version
can be accessed from GitHub by calling devtools: :install_github("”joshuawlambert/rFSA").
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